Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29408691

RESUMO

The energy savings experienced by fish swimming in a school have so far been investigated in an near-idealised experimental context including a relatively laminar water flow. The effects of explicitly turbulent flows and different group sizes are yet to be considered. Our repeated-measures study is a first step in addressing both of these issues: whether schooling is more energetically economical for fish when swimming in a quantified non-laminar flow and how this might be moderated by group size. We measured tail beat frequency (tbf) in sea bass swimming in a group of 3 or 6, or singly. Video data enabled us to approximately track the movements of the fish during the experiments and in turn ascertain the water flow rates and turbulence levels experienced for each target individual. Although the fish exhibited reductions in tbf during group swimming, which may indicate some energy savings, these savings appear to be attenuated, presumably due to the water turbulence and the movement of the fish relative to each other. Surprisingly, tbf was unrelated to flow rate when the fish were swimming singly or in a group of three, and decreased with increasing flow rates when swimming in a group of six. However, the fish increased tbf in greater turbulence at all group sizes. Our study demonstrates that under the challenging and complex conditions of turbulent flow and short-term changes in school structure, group size can moderate the influences of water flow on a fish's swimming kinematics, and in turn perhaps their energy costs. SUMMARY STATEMENT: The energy savings that sea bass experience from schooling are affected by flow speed or turbulence, moderated by group size.


Assuntos
Bass/fisiologia , Natação , Cauda/fisiologia , Movimentos da Água , Água , Animais , Metabolismo Energético
2.
Conserv Physiol ; 4(1): cow046, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27766156

RESUMO

The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer term by collaborating with modellers and fishery biologists.

3.
Conserv Physiol ; 4(1): cov072, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293751

RESUMO

Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains because of the complexity of biological systems, the inherently dynamic nature of the environment and the scale at which many migrations occur and associated threats operate, necessitating improved integration of physiological approaches to the conservation of migratory animals.

4.
Conserv Physiol ; 4(1): cow005, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293757

RESUMO

Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management.

5.
Conserv Physiol ; 2(1): cou024, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27293645

RESUMO

As the field of conservation physiology develops and becomes increasingly integrated with ecology and conservation science, the fundamental concept of scale is being recognized as important, particularly for ensuring that physiological knowledge is contextualized in a manner most relevant to policy makers, conservation practitioners and stakeholders. Failure to consider the importance of scale in conservation physiology-both the challenges and the opportunities that it creates-will impede the ability of this discipline to generate the scientific understanding needed to contribute to meaningful conservation outcomes. Here, we have focused on five aspects of scale: biological, spatial, temporal, allometric and phylogenetic. We also considered the scale of policy and policy application relevant to those five types of scale as well as the merits of upscaling and downscaling to explore and address conservation problems. Although relevant to all systems (e.g. freshwater, terrestrial) we have used examples from the marine realm, with a particular emphasis on fishes, given the fact that there is existing discourse regarding scale and its relevance for marine conservation and management. Our synthesis revealed that all five aspects of scale are relevant to conservation physiology, with many aspects inherently linked. It is apparent that there are both opportunities and challenges afforded by working across scales but, to understand mechanisms underlying conservation problems, it is essential to consider scale of all sorts and to work across scales to the greatest extent possible. Moreover, given that the scales in biological processes will often not match policy and management scales, conservation physiology needs to show how it is relevant to aspects at different policy/management scales, change the scales at which policy/management intervention is applied or be prepared to be ignored.

6.
Curr Biol ; 21(20): R861-70, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22032194

RESUMO

For organisms that fly or swim, movement results from the combined effects of the moving medium - air or water - and the organism's own locomotion. For larger organisms, propulsion contributes significantly to progress but the flow usually still provides significant opposition or assistance, or produces lateral displacement ('drift'). Animals show a range of responses to flows, depending on the direction of the flow relative to their preferred direction, the speed of the flow relative to their own self-propelled speed, the incidence of flows in different directions and the proportion of the journey remaining. We here present a classification of responses based on the direction of the resulting movement relative to flow and preferred direction, which is applicable to a range of taxa and environments. The responses adopted in particular circumstances are related to the organisms' locomotory and sensory capacities and the environmental cues available. Advances in biologging technologies and particle tracking models are now providing a wealth of data, which often demonstrate a striking level of convergence in the strategies that very different animals living in very different environments employ when moving in a flow.


Assuntos
Movimento , Orientação/fisiologia , Ar , Migração Animal , Animais , Organismos Aquáticos , Artrópodes/fisiologia , Sinais (Psicologia) , Peixes/fisiologia , Gafanhotos/fisiologia , Larva , Locomoção , Natação , Ondas de Maré
7.
Nature ; 451(7182): 1098-102, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18305542

RESUMO

Many free-ranging predators have to make foraging decisions with little, if any, knowledge of present resource distribution and availability. The optimal search strategy they should use to maximize encounter rates with prey in heterogeneous natural environments remains a largely unresolved issue in ecology. Lévy walks are specialized random walks giving rise to fractal movement trajectories that may represent an optimal solution for searching complex landscapes. However, the adaptive significance of this putative strategy in response to natural prey distributions remains untested. Here we analyse over a million movement displacements recorded from animal-attached electronic tags to show that diverse marine predators-sharks, bony fishes, sea turtles and penguins-exhibit Lévy-walk-like behaviour close to a theoretical optimum. Prey density distributions also display Lévy-like fractal patterns, suggesting response movements by predators to prey distributions. Simulations show that predators have higher encounter rates when adopting Lévy-type foraging in natural-like prey fields compared with purely random landscapes. This is consistent with the hypothesis that observed search patterns are adapted to observed statistical patterns of the landscape. This may explain why Lévy-like behaviour seems to be widespread among diverse organisms, from microbes to humans, as a 'rule' that evolved in response to patchy resource distributions.


Assuntos
Ecossistema , Comportamento Alimentar , Biologia Marinha , Modelos Biológicos , Atividade Motora , Comportamento Predatório , Animais , Euphausiacea , Fractais , Gadiformes , Oceanos e Mares , Densidade Demográfica , Probabilidade , Focas Verdadeiras , Tubarões , Spheniscidae , Atum , Tartarugas
8.
Ecology ; 87(10): 2647-56, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17089672

RESUMO

Some marine species have been shown to target foraging at particular hotspots of high prey abundance. However, we show here that in the year after a nesting season, female leatherback turtles (Dermochelys coriacea) in the Atlantic generally spend relatively little time in fixed hotspots, especially those with a surface signature revealed in satellite imagery, but rather tend to have a pattern of near continuous traveling. Associated with this traveling, distinct changes in dive behavior indicate that turtles constantly fine tune their foraging behavior and diel activity patterns in association with local conditions. Switches between nocturnal vs. diurnal activity are rare in the animal kingdom but may be essential for survival on a diet of gelatinous zooplankton where patches of high prey availability are rare. These results indicate that in their first year after nesting, leatherback turtles do not fit the general model of migration where responses to resources are suppressed during transit. However, their behavior may be different in their sabbatical years away from nesting beaches. Our results highlight the importance of whole-ocean fishing gear regulations to minimize turtle bycatch.


Assuntos
Migração Animal , Comportamento Alimentar , Tartarugas , Animais , Oceano Atlântico , Mergulho , Feminino , Zooplâncton
9.
J Anim Ecol ; 75(1): 176-90, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16903055

RESUMO

1. Diel vertical migration (DVM) is a widespread phenomenon among marine and freshwater organisms and many studies with various taxa have sought to understand its adaptive significance. Among crustacean zooplankton and juveniles of some fish species DVM is accepted widely as an antipredator behaviour, but little is known about its adaptive value for relatively large-bodied, adult predatory fish such as sharks. Moreover, the majority of studies have focused on pelagic forms, which raises the question of whether DVM occurs in bottom-living predators. 2. To investigate DVM in benthic predatory fish in the marine environment and to determine why it might occur we tracked movements of adult male dogfish (Scyliorhinus canicula) by short- and long-term acoustic and archival telemetry. Movement studies were complemented with measurements of prey abundance and availability and thermal habitat within home ranges. A thermal choice experiment and energy budget modelling was used to investigate trade-offs between foraging and thermal habitat selection. 3. Male dogfish undertook normal DVM (nocturnal ascent) within relatively small home ranges (-100 x 100 m) comprising along-bottom movements up submarine slopes from deeper, colder waters occupied during the day into warmer, shallow prey-rich areas above the thermocline at night. Few daytime vertical movements occurred. Levels of activity were higher during the night above the thermocline compared to below it during the day indicating they foraged in warm water and rested in colder depths. 4. A thermal choice experiment using environmentally realistic temperatures supported the field observation that dogfish positively avoided warmer water even when it was associated with greater food availability. Males in laboratory aquaria moved into warm water from a cooler refuge only to obtain food, and after food consumption they preferred to rest and digest in cooler water. 5. Modelling of energy budgets under different realistic thermal-choice scenarios indicated dogfish adopting a 'hunt warm - rest cool' strategy could lower daily energy costs by just over 4%. Our results provide the first clear evidence that are consistent with the hypothesis that a benthic marine-fish predator utilizes DVM as an energy conservation strategy that increases bioenergetic efficiency.


Assuntos
Cação (Peixe)/fisiologia , Metabolismo Energético/fisiologia , Locomoção/fisiologia , Comportamento Predatório/fisiologia , Temperatura , Animais , Cação (Peixe)/metabolismo , Masculino , Oceanos e Mares , Telemetria/veterinária
10.
Proc Biol Sci ; 273(1591): 1195-201, 2006 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-16720391

RESUMO

Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of 'model' sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754 km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.


Assuntos
Comportamento Predatório , Tubarões/fisiologia , Zooplâncton/fisiologia , Animais , Oceano Atlântico , Biomassa , Simulação por Computador , Meio Ambiente , Geografia , Modelos Biológicos , Telemetria
11.
Proc Biol Sci ; 270(1529): 2097-103, 2003 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-14561271

RESUMO

Data from plaice, Pleuronectes platessa L., tagged with electronic data storage tags, were used to test whether these fishes exhibited migration route and spawning area fidelity in successive spawning seasons. Depth and temperature data were recorded for each fish over 365-512 days in the central North Sea and this information was used to reconstruct movements based on tidal locations. We discovered highly directed seasonal migrations from the winter spawning area south of a major topographical feature, Dogger Bank Tail End, to summer feeding grounds 250 km to the north in deep, cold, thermally stratified water. Our results show synchronous timing of migration, repeated pre- and post-spawning migration routes and 100% spawning area fidelity, including two individuals that returned to within 20 km of their previous season's spawning location. This is the first study to provide a complete reconstruction of annual migrations by individual fishes, showing strong homing behaviour along consistent migration routes.


Assuntos
Migração Animal , Linguados/fisiologia , Comportamento de Retorno ao Território Vital , Animais , Ecologia , Europa (Continente) , Feminino , Pesqueiros , Geografia , Mar do Norte , Oceanos e Mares , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...